On Embeddings of Hamiltonian Paths and Cycles in Extended Fibonacci Cubes
نویسنده
چکیده
The interconnection network is an essential component of a distributed system or of a supercomputer based on large-sale parallel processing. Because in distributed systems the communication between processors is based on message exchange, the network topology is of a great importance. The interconnection network can be seen as a graph and the properties of a network can be studied using combinatorics and graph theory. A number of interconnection network topologies have been studied. The Extended Fibonacci Cube, EFC, is a topology which provides good properties for an interconnection network regarding diameter, node degree, recursive decomposition, embeddability and communication algorithms. In this research we present some properties of the Extended Fibonacci Cubes, we define a Gray code for extended Fibonacci cubes and show how a hamiltonian path, a hamiltonian cycle and a 2D mesh can be embedded in an Extended Fibonacci Cube.
منابع مشابه
Embeddings of Linear Arrays, Rings and 2-D Meshes on Extended Lucas Cube Networks
A Fibonacci string is a length n binary string containing no two consecutive 1s. Fibonacci cubes (FC), Extended Fibonacci cubes (ELC) and Lucas cubes (LC) are subgraphs of hypercube defined in terms of Fibonacci strings. All these cubes were introduced in the last ten years as models for interconnection networks and shown that their network topology posseses many interesting properties that are...
متن کاملExtended Fibonacci cubes
The Fibonacci Cube is an interconnection network that possesses many desirable properties that are important in network design and application. The Fibonacci Cube can efficiently emulate many hypercube algorithms and uses fewer links than the comparable hypercube, while its size does not increase as fast as the hypercube. However, most Fibonacci Cubes (more than 2/3 of all) are not Hamiltonian....
متن کامل-graceful labelings of partial cubes
7 Partial cubes are graphs that allow isometric embeddings into hypercubes. -graceful labelings of partial cubes are introduced as a natural extension of graceful labelings of trees. It is shown that several classes of partial cubes are -graceful, for instance even 9 cycles, Fibonacci cubes, and (newly introduced) lexicographic subcubes. The Cartesian product of -graceful partial cubes is again...
متن کاملEfficient Embeddings into Hypercube-like Topologies
Embeddings of various graph classes into hypercubes have been widely studied. Almost all these classes are regularly structured graphs such as meshes, complete trees or pyramids. In this paper, we present a general method for one-to-one embeddings of irregularly structured graphs into their optimal hypercubes, based on extended edge bisectors of graphs. An extended edge bisector is an edge bise...
متن کاملInvestigating independent subsets of graphs, with Mathematica
With this work we aim to show how Mathematica can be a useful tool to investigate properties of combinatorial structures. Specifically, we will face enumeration problems on independent subsets of powers of paths and cycles, trying to highlight the correspondence with other combinatorial objects with the same cardinality. Then we will study the structures obtained by ordering properly independen...
متن کامل